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Abstract

Hydrodynamic impact phenomena are three dimensional in nature and naval architects need more advanced tools

than a simple strip theory to calculate impact loads at the preliminary design stage. Three-dimensional analytical

solutions have been obtained with the help of the so-called inverse Wagner problem as discussed by Scolan and

Korobkin in 2001. The approach by Wagner provides a consistent way to evaluate the flow caused by a blunt body

entering liquid through its free surface. However, this approach does not account for the spray jets and gives no idea

regarding the energy evacuated from the main flow by the jets. Clear insight into the jet formation is required. Wagner

provided certain elements of the answer for two-dimensional configurations. On the basis of those results, the energy

distribution pattern is analysed for three-dimensional configurations in the present paper.

r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The three-dimensional hydrodynamic impact problem is considered within the classical assumptions of the Wagner

theory. A blunt solid body initially touches a flat free surface at a single point which is taken as the origin of the

Cartesian coordinate system Oxyz [see Fig. 1(a)]. Then the body starts to enter the liquid vertically at a prescribed

velocity UðtÞ [see Fig. 1(b)]. The liquid is assumed to be ideal and incompressible and the corresponding flow to be
potential. External mass forces and capillary effects are not taken into account. The impact phenomenon is very rapid;

during a drop test, the maximum of the body deceleration is usually much higher than the acceleration due to gravity.

During the initial stage of impact, the flow region is divided into three parts: (i) outer region, (ii) jet root region and

(iii) jet region. These subdomains of the flow region are shown in Fig. 1(c) for a two-dimensional body. For blunt

bodies, the curvature of the liquid free surface in the jet root region is very large but the dimension of this region during

the initial stage is much smaller than the characteristic dimension of the outer region (Cointe, 1989). Therefore, in order

to investigate the liquid flow in the outer region, the moving jet root region can be approximately replaced by a

corresponding curve GbðtÞ on the entering body surface [see Fig. 1(d)]. This curve now defines an approximate wet
surface of the body denoted DbðtÞ: This replacement of the narrow jet root region by the curve GbðtÞ cuts the spray jet
from the outer region, where the flow can be determined independent of what might occur in both the jet root region

and the jet region itself.
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Further simplifications for the outer region suggested by Wagner (1932) are available at the initial stage of blunt body

impact. First, the elevation of the three-dimensional curve GbðtÞ above the plane z ¼ 0 is of the order of the penetration
depth which is much smaller than the horizontal dimensions of the part of the body surface DbðtÞ: Therefore, the curve
GbðtÞ can be approximately replaced during the initial stage by its projection GðtÞ on the plane z ¼ 0 (see Fig. 2). The
curve GðtÞ is known within the Wagner approach as the contact line. Second, the wet part of the body DbðtÞ can be
approximated with the flat disc DðtÞ bounded by the contact line GðtÞ: The flat disc DðtÞ is known within the Wagner
approach as the contact region between the entering body and the liquid. The Wagner approach itself is sometimes

referred to as the ‘‘flat-disc approximation’’. Third, in order to describe the liquid flow in the outer region, the boundary

conditions on both the free surface of the liquid and on the wet part of the body can be linearized and imposed on the

undisturbed initial position of the liquid boundary z ¼ 0: This means that the free surface and the wet part of the body
must be projected one-to-one onto the horizontal plane z ¼ 0: This is illustrated in the lower sketch of Fig. 2. The
original nonlinear problem is reduced within the Wagner theory to a linear mixed boundary-value problem for the

velocity potential fðx; y; z; tÞ: The body surface is impermeable and the Neumann condition is prescribed on the wet
body surface, fz ¼ �UðtÞ: Hence, the dynamic free surface condition reduces to the homogeneous Dirichlet condition,
f ¼ 0: As a consequence, the flow region can be extended symmetrically with respect to the plane z ¼ 0 containing both
the linearized free surface and wet body surface. One finally has to calculate the flow over a corresponding flat disc and

to find the shape of the disturbed free surface using the kinematic condition.

Within the direct Wagner problem (both the shape and the velocity of the body are given), the position of GðtÞ must
be calculated using the Wagner condition, which is not an easy task. The Wagner condition requires the continuity

between the disturbed free surface and the surface of the entering body along the contact line. Alternatively within the

inverse Wagner problem [the time variation of the contact line GðtÞ is known and the body velocity as well], the body
shape which provides this contact line can be reconstructed with the help of the Wagner condition.

Since the pioneering works by Wagner (1932) and then by Borodich (1988), the inverse problem has received little

attention. However, among the major advances in that domain, one may cite exact solutions of the direct Wagner

problem after calculating analytical solutions from the inverse Wagner problem. For example, the analytic solution of

Fig. 1. (a) Coordinate system in which the body shape is described; the horizontal plane corresponds to the initially flat free surface. (b)

Local deformations of free surface as the body enters the fluid. The relative dimensions of the deformations are not correct and

intentionally stretched for sake of illustration. (c) The three regions around the jet root with their characteristic lengths. The size of the

jet root region e is very small compared to the length scales of the other regions and hence curvature is locally very large in the jet root.
(d) Approximate curve GbðtÞ which cuts the spray and encloses the approximate wet surface DbðtÞ:
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the elliptic paraboloid entering a liquid with a constant speed is now a reference case for the validation of other

numerical approaches. Furthermore, many families of shapes for which analytical solutions can be calculated have been

designed (Scolan and Korobkin, 2000).

More generally, algorithms for the generation of shapes with prescribed constraints can now be established and used

in a standard way provided that the contact line GðtÞ is elliptic. The case of elliptic contact lines might be considered as
too restrictive since an ellipse depends on only two parameters: the two semi-axes. In spite of that, since the time

variation of GðtÞ may be arbitrary, many shapes of practical interest can be studied as long as the body is blunt around
its initial contact point, which is the main assumption of the Wagner theory. In many respects, this is the case of the

bow flare of tankers and various parts of sailing boats (bow, stern and sides).

The Wagner theory is in fact formally valid during the initial stage, when the penetration depth of the entering body

is much smaller than the dimensions of its wet part. But close to the contact line, the theory fails since both the liquid

velocity and the hydrodynamic pressure have singularities along this line. The singularity is integrable and hence the

force can be calculated. However, in order to get uniformly valid pressure distribution and to improve prediction of the

hydrodynamic force on the entering body, a solution which describes details of the flow close to the contact line must be

introduced.

The jet root region was analysed by Wagner (1932) and a two-dimensional potential solution exists. So far the

problem posed in the flow region requires CFD approaches and actually the physical phenomena are reasonably

reproduced by using smooth particle hydrodynamics or volume of fluid algorithms that are well suited to simulations of

rapid phenomena [see recent results by Fontaine et al. (2000)].

Using much simpler approaches, Wagner derived an analytical two-dimensional solution for the jet root region

within the potential theory. An infinite length of the jet was theoretically predicted. For three-dimensional bodies one

must even deal with a jet sheet. In order to obtain the shape of this jet sheet and the flow inside it, the jet region also has

to be considered. The jet solution has then to be matched with that for the jet root region. In the two-dimensional

wedge-entry problem, the jet solution was derived by Howison et al. (1991). It was shown that the flow in the jet region
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Fig. 2. Sketches of three-dimensional flow pattern for normal penetration of a blunt body into a liquid within the original problem and

within the linearized Wagner approximation: DðtÞ; contact region; FSðtÞ; liquid free surface; GðtÞ; contact line.
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is governed by the shallow-water equations and the jet is wedge shaped. This technique was extended by Korobkin

(1994, 1997) to the case of a parabolic contour entering a compressible liquid. Using both the known liquid flow in the

jet region and the geometry of this region, the energy of the jet was evaluated in both plane and axisymmetric cases. It

was shown that during the impact of two-dimensional or axisymmetric blunt bodies onto a compressible liquid free

surface at a constant velocity, half of the work done to move the body goes to the main flow kinetic energy and the

other half is taken away with spray jets. The jets are very thin at the initial stage but the jet velocity far exceeds the

velocity of the entering body.

This result was confirmed by Molin et al. (1996) using another method for the two-dimensional problem of impact

onto an incompressible liquid surface. This method is based on the concept of energy flux evaluated through the jet root

region. The main advantage of this approach is that the flux can be directly determined from the solution in the jet root

region and there is no need to deal with the flow in the jet region and its geometry. This approach is used in the present

paper to evaluate the part of the energy taken away with the jet in the three-dimensional impact problem. It will be

shown that in order to evaluate the jet energy, one needs only to know the asymptotic behaviour of the outer solution

close to the contact line.

The outer solution for an arbitrary shape of three-dimensional entering body is still not available even within the

Wagner theory. The present study is restricted to an elliptic contact line for which the velocity potential is known and

the so-called inverse Wagner problem has solutions. It is important to note that there are no restrictions on the

evolution of the semi-axes of the elliptic contact line in time.

It is shown that the outer flow is approximately two dimensional close to elliptic contact lines. Therefore, it is possible

to use the two dimensional nonlinear solution by Wagner (1932) for the jet root region. By matching locally the three-

dimensional outer solution with the two dimensional jet root solution, one arrives at a uniformly valid asymptotic

description of the pressure distribution. In the case of an elliptic contact region, this combined solution is used to

evaluate the energy distribution throughout the flow domain and to prove that the energy is equally transmitted to the

bulk of the fluid and to the spray jet in the case of constant velocity of the entering body.

2. Asymptotic analysis close to the contact line

Within the Wagner theory, the wet part of the entering body is approximated by a flat disc DðtÞ which evolves in time.
The boundary conditions are linearized and imposed on the initially undisturbed liquid level z ¼ 0: The liquid flow
caused by the impact is assumed as irrotational and is described by the velocity potential foutðx; y; z; tÞ; where zo0: It is
assumed that the Wagner problem has been solved already so that the region DðtÞ and the body velocity UðtÞ are
prescribed. We restrict ourselves to the case of elliptic contact regions, DðtÞ ¼ fx; y j x2=a2ðtÞ þ y2=b2ðtÞo1g; with the
planar ða=b-0Þ and axisymmetric ða=b ¼ 1Þ problems representing the limiting cases. Here aðtÞ; bðtÞ and UðtÞ are
arbitrary monotonic positive functions, which satisfy the following inequalities aðtÞrbðtÞ; UðtÞ{ ’aðtÞ and bð0Þ ¼ 0
according to the basic assumptions of the Wagner theory. The aspect ratio is denoted kðtÞ ¼ aðtÞ=bðtÞ and the
eccentricity is e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
: The dot stands for the time derivative.

The easiest way to present the velocity potential foutðx; y; z; tÞ in the case of elliptic contact region is to treat it as the
limiting case of a vertically moving ellipsoid in an unbounded fluid. By using ellipsoidal coordinates as defined either in

Milne-Thomson (1960, Art. 17.50–17.52) or in Lamb (1932, Art. 112–114), we obtain [see Scolan and Korobkin (2001)

for further details]

foutðx; y; z; tÞ ¼
UðtÞa2ðtÞbðtÞz

2EðeÞ

Z
N

lðx;y;z;tÞ

ds

s3=2ða2 þ sÞ1=2ðb2 þ sÞ1=2
ðzo0Þ; ð1Þ

where eðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2ðtÞ=b2ðtÞ

p
; EðeÞ is the complete elliptic integral of the second kind

EðeÞ ¼
Z p=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 sin2 y

p
dy; ð2Þ

and lðx; y; z; tÞ is the nonnegative root of the cubic equation

a�2b�2l3 þ L2l
2 þ L1l� z2 ¼ 0; ð3Þ

L1ðx; y; z; tÞ ¼ 1�
x2

a2
�

y2

b2
�

a2 þ b2

a2b2
z2; L2ðx; y; z; tÞ ¼

1

a2
þ
1

b2
�

x2 þ y2 þ z2

a2b2
: ð4Þ

The elliptic disc DðtÞ corresponds to lðx; y; 0; tÞ ¼ 0: The integral in Eq. (1) is singular as l-0: In order to study the
behaviour of the outer velocity potential foutðx; y; z; tÞ close to the periphery of the contact region, an integration by
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part is performed

foutðx; y; z; tÞ ¼
Ua2b

EðeÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ lÞðb2 þ lÞ

p zffiffiffi
l

p �
Ua2bz

2EðeÞ

Z
N

l

ða2 þ b2 þ 2sÞ ds

s1=2ða2 þ sÞ3=2ðb2 þ sÞ3=2
: ð5Þ

Using the definition of the ellipsoidal coordinates, we obtain

zffiffiffi
l

p ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

x2

a2 þ l
�

y2

b2 þ l

s
ð6Þ

in the flow region, zo0; which finally gives

fout ¼ �
Ua2b

EðeÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 þ lÞðb2 þ lÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

x2

a2 þ l
�

y2

b2 þ l

s
�

Ua2bz

2EðeÞ

Z
N

l

ða2 þ b2 þ 2sÞ ds

s1=2ða2 þ sÞ3=2ðb2 þ sÞ3=2
: ð7Þ

Expression (7) is suitable to analyse the local behaviour of the outer solution near the contact line GðtÞ ¼ fx; y j x ¼
aðtÞcos a; y ¼ bðtÞsin a; 0rao2pg; where a is a parameter.
For that purpose, it is convenient to introduce the local coordinate system ðP; x1; y1; z1Þ; where x ¼ a cos aþ x1;

y ¼ b sin aþ y1; z ¼ z1 and ðx21 þ y21 þ z21Þ=a2 ¼ OðE2Þ; with E being a small nondimensional parameter such that E{1
and which formally characterizes the size of the contact line vicinity. Within the local coordinate system the following

asymptotic formulae for the coefficients in Eq. (4) are valid:

L1 ¼ �2sðx1; y1; a; tÞ½1þ OðEÞ
; sðx1; y1; a; tÞ ¼ x1a
�1 cos aþ y1b

�1sin a; ð8Þ

L2 ¼ mða; tÞ½1þ OðEÞ
; mða; tÞ ¼ a2ðtÞsin2 aþ b2ðtÞcos2 a; ð9Þ

where m=a2 ¼ Oð1Þ and s ¼ OðEÞ in the leading order as E-0: Taking into account formulae (8) and (9), we obtain the
positive root of Eq. (3) in the form

l ¼
a2b2

m
s þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ

mz21
a2b2

s0
@

1
A½1þ OðE2Þ
 ðE-0Þ: ð10Þ

The second term in formula (7) is of the order of OðEÞ: In the first term, we have l=a2 ¼ OðEÞ; which follows from
Eq. (10), and

1�
x2

a2 þ l
�

y2

b2 þ l
¼ �2s þ

lm
a2b2

þ OðE2Þ: ð11Þ

By using asymptotic formulae (10) and (11), we finally obtain the local behaviour of the velocity potential close to the

contact line as

foutðx; y; z; tÞ ¼ �
Ua

EðeÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ

mz21
a2b2

s
� s

0
@

1
A
1=2

½1þ OðE1=2Þ
; ð12Þ

where s ¼ sðx1; y1; a; tÞ and z1 ¼ z:
Let us consider a new coordinate system ðP; x; Z; zÞ; which is obtained by rotation of the system

ðP; x1; y1; z1Þ counterclockwise by the angle a so that x1 ¼ x cos a� Z sin a; y1 ¼ x sin aþ Z cos a and z1 ¼ z: It is
worth noting that s ¼ x

ffiffiffi
m

p
=ðabÞ in the new coordinate system, which implies that the flow is locally two dimensional.

One should also note that the leading order term of the outer velocity potential in Eq. (11) does not depend on the

coordinate Z but only on x and z: Thus near the contact line, where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
=a ¼ OðEÞ; the velocity potential of the

outer flow behaves as

fout ¼ �UE�1ðeÞm1=4ða=bÞ1=2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

q
� xÞ1=2½1þ OðE1=2Þ
: ð13Þ

It is clear that the axes Px and PZ are in normal and tangential directions to the contact line, respectively
(this is described in Fig. 3). Therefore, near the contact line the flow in the tangential direction to this line (that is to say

the direction PZ) is negligible compared to the flow in the normal direction. The local flow described by Eq. (13) is
similar to that in the corresponding two dimensional problem (see Wagner, 1932) but now the coefficient

E�1ðeÞm1=4ða=bÞ1=2 is strongly dependent on the three-dimensional configuration of the original problem. This two
dimensional local flow can be matched to the solution in the jet root region established by Wagner (1932) for the planar

impact problem.
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3. Parameters of the jet in three-dimensional impact problem

The two dimensional flow in the jet root region was analysed by Wagner (1932), Cointe and Armand (1987) and

Howison et al. (1991) among others. In this section, we do not reproduce the developed theory but only the main

formulae yielding the parameters of the jet.

The flow in the jet root region is considered within the moving coordinate system ðP; x; Z; zÞ;

where

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ Z2 þ z2

q
=a{1: The local velocity potential frootðx; zÞ does not depend on the tangential

coordinate Z; which follows from the matching condition of the outer solution [Eq. (13)] to the solution in the jet

root region.

The flow in the jet root region is quasi-stationary in the leading order as the size of this region tends to zero. This

region is characterized by the jet thickness dða; tÞ and the velocity V ða; tÞ of the fluid in the jet as illustrated in Fig. 4. The
dynamic boundary condition on the free surface shows that the jet velocity V ða; tÞ is equal to the normal velocity of the
point P; which is the origin of the moving coordinate system [see Cointe (1989) for more details]. The two dimensional
jet root solution by Wagner (1932) provides, in particular, the asymptotics of both the velocity potential and the

pressure on the body surface z ¼ 0:

frootðx; 0ÞB� 4V

ffiffiffiffiffiffiffi
djxj
p

r
; prootðx; 0ÞB2rV2

ffiffiffiffiffiffiffiffi
d
pjxj

s
; ð14Þ

in the far field, where jxj=dc1; jxj=a{1 and z ¼ 0: Expressions (14) have to be considered as the ‘‘outer’’ asymptotics of
the ‘‘inner’’ solution and matched to the ‘‘inner’’ asymptotics (13) of the ‘‘outer’’ solution. Comparing asymptotic

formulae (13) and (14), one obtains the jet thickness as

dða; tÞ ¼
p
8

U2ðtÞða=bÞm1=2ða; tÞ
E2ðeÞV2ða; tÞ

: ð15Þ

Details of the matching procedure were given by Cointe (1989).

The jet velocity V ða; tÞ is equal to the normal velocity of the moving contact line, the position of which is described by
the equation Gðx; y; tÞ ¼ 0; where Gðx; y; tÞ ¼ 1� x2=a2ðtÞ � y2=b2ðtÞ; yielding

V ða; tÞ ¼
’G

jrGj
; ’Gða; tÞ ¼ 2

’a

a
cos2 aþ 2

’b

b
sin2 a; jrGjða; tÞ ¼

2m1=2ða; tÞ
aðtÞbðtÞ

; ð16Þ

where r is the gradient operator. Eqs. (15) and (16) make it possible to calculate the jet velocity V ða; tÞ and the jet
thickness dða; tÞ at any point along the contact line (0rao2p) during the initial stage of the impact. These equations
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1
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Fig. 3. Coordinate systems in the vicinity of the contact line GðtÞ:
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lead to the helpful equality

dða; tÞV3ða; tÞ ¼
p
16

U2a2

E2ðeÞ
’Gða; tÞ ð17Þ

used below to evaluate the flux of kinetic energy through the jet.

4. Flux of energy through the jet

The total velocity of fluid in the jet Vf ða; tÞ is equal to the jet velocity V ða; tÞ plus the normal velocity of the moving
contact line, which yields Vf ða; tÞ ¼ 2V ða; tÞ: The part of the kinetic energy DEjða; tÞ; which leaves the main flow region
through the jet root region of a small length Dc during a small time interval Dt; is given as

DEjða; tÞ ¼
1

2
Dmða; tÞV2

f ða; tÞ; Dmða; tÞ ¼ rdða; tÞDcV ða; tÞDt; ð18Þ

where r is the liquid density and Dc ¼ m1=2ða; tÞDa: Eqs. (17) and (18) provide the total flux of the kinetic energy through
the three-dimensional jet in the form

dEtotj ðtÞ

dt
¼ 2r

Z 2p

0

dða; tÞV3ða; tÞm1=2ða; tÞ da ¼
p
8

rU2a2

E2ðeÞ

Z 2p

0

’Gða; tÞm1=2ða; tÞ da: ð19Þ

By using Eqs. (9) and (16), the integral in Eq. (19) can be evaluated analytically and the total flux is

dEtotj ðtÞ

dt
¼

rU2ðtÞpa

EðeÞ
’ab þ

1

3
ð ’ba � ’abÞ 1þ k2

DðeÞ
EðeÞ

� �
 �
; ð20Þ

where DðeÞ is the complete elliptic integral of the third kind.

5. Homothetical case

It is worth noting that in the homothetical case the elliptic disc DðtÞ expands in such a way that the aspect ratio
k ¼ aðtÞ=bðtÞ does not vary in time, Eq. (20) provides a much simpler expression for the flux

dEtotj ðtÞ

dt

����
’k¼0

¼
rU2ðtÞpk2b2 ’b

EðeÞ
: ð21Þ

In the homothetical case, where ’a=a ¼ ’b=b; the derivative ’Gða; tÞ given by Eq. (16) is equal to 2 ’b=b and the product

dða; tÞV3ða; tÞ given by Eq. (17) does not depend on the angle a: Therefore, the quantity DEjða; tÞ introduced by Eq. (18)
does not depend on the angle a either. This implies that the amount of kinetic energy which leaves the main flow

α,t)

V(α,t)

V(α,t)

V(

Body surface P

moving with 
velocity 

δ(α,  )tContact point

Fig. 4. Parameters which characterize the jet region: jet thickness dða; tÞ and the velocity V ða; tÞ of the fluid in the jet.
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through any interval of the contact line does not depend on the position of this interval along the contact line but only

on the interval length.

The two dimensional limiting case, bðtÞcaðtÞ; can be treated as the homothetical one with k ¼ 0: Eq. (21) is of little
help now because it predicts an infinite flux as k-0; b-N and kbðtÞ ¼ aðtÞ: This is the quantity DEjða; tÞ=ðDcDtÞ which
is of main interest in the two dimensional impact problem. Eqs. (18) yield DEj=ðDcDtÞ ¼ 2rdV3; where dV3 ¼
1
8pU2ðtÞaðtÞ ’aðtÞ as it follows from Eqs. (16) and (17) when k-0: For a parabolic contour z ¼ x2=ð2RÞ � hðtÞ entering
liquid at the velocity UðtÞ ¼ ’hðtÞ; we obtain aðtÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
RhðtÞ

p
; a ’a ¼ 2RUðtÞ and DEj=ðDcDtÞ ¼ 1

2
prRU2ðtÞ: Taking into

account that there are two jets in the two dimensional impact problem, we find the energy flux as

2DEj

DcDt
¼ prRU2ðtÞ; ð22Þ

which coincides with that derived by Molin et al. (1996) in the problem of the parabolic contour entering liquid at

constant velocity.

Eq. (21) indicates that in the case of a constant entry velocity and the major semi-axis bðtÞ ¼ Bt1=3; the flux of energy
in the jet does not vary in time. Fig. 5 shows the corresponding shape of the body generated with a constant eccentricity

e ¼ 0:9; B ¼ 1 m s�1=3 and the body velocity (U ¼ 1 m s�1) up to the time instant t ¼ 0:01 s: The shape was
reconstructed using the technique developed by Scolan and Korobkin (2001). The full shape with disturbed free surface

and the shape under the undisturbed free surface are drawn. The length scales are approximately indicated at the tips of

the arrows. The free surface elevation w in Fig. 5 was determined from the kinematic boundary condition wtðx; y; tÞ ¼
fzðx; y; 0; tÞ; where the derivative fzðx; y; 0; tÞ outside the contact region is computed using Eq. (1).
Note that the jet cannot be computed within the present analysis. However, we know that the jet is very thin and the

jet root is located at the intersection of the liquid free surface and the wet part of the entering body surface. It is seen

that the splash ascends the steeper side of the body (boat) more quickly than the bow or stern. For the entry of shape

depicted in Fig. 5 into water with specific mass r ¼ 1000 kgm�3; the given impact conditions provides approximately
constant flux of the energy through the jet. Quantitatively, the flux of the energy is

dEtotj ðtÞ

dt
¼ 133:2 kg m2 s�3 ð23Þ

during the initial stage of the process.

Consider the elliptic paraboloid entry problem for which an analytical solution exists. The position of the body at

instant t is described by the equation

z ¼
x2

A2
þ

y2

B2
� U0t; ð24Þ

where A2 and B2 are length scales in the two horizontal directions. The velocity U0 of the entering body is constant. In

this problem, the contact region is elliptic and expands homothetically, which implies that the flux can be evaluated with

0.015

0.1

0.25

0.2

0.025

0.5

Fig. 5. Full shape with disturbed free surface on the left, shape under the undisturbed free surface on the right. Length scales are

indicated at the tip of arrows, the vertical scale is stretched compared to the horizontal ones. The perspective means that indicated

length scales do not necessarily fit with the limit of the drawn shape.

Y.-M. Scolan, A.A. Korobkin / Journal of Fluids and Structures 17 (2003) 275–286282



the help of Eq. (21). Using the results by Scolan and Korobkin (2001) obtained for an elliptic paraboloid entering liquid

at a constant velocity, we find

dEtotj ðtÞ

dt
¼

pk2

2EðeÞ
rU

7=2
0 B3

ffiffi
t

p
1þ k2DðeÞ=EðeÞ
� �3=2

; ð25Þ

where k is defined by the equation

k2
1þ k2DðeÞ=EðeÞ
2� k2DðeÞ=EðeÞ

¼ k2g ; ð26Þ

with kg ¼ A=B being the aspect ratio parameter which characterizes the slenderness of the entering body. In the

axisymmetric case, A2 ¼ B2 ¼ R; one gets kg ¼ 1; k ¼ 1; e ¼ 0; Eð0Þ ¼ p
2
; Dð0Þ ¼ p

4
; and Eq. (25) gives

dEtotj ðtÞ

dt

����
kg¼1

¼
3

2

� �3=2 ffiffi
t

p
rU

7=2
0 R3=2: ð27Þ

This formula agrees with that derived by Korobkin (1994) for the axisymmetric case.

Let us consider elliptic paraboloids obtained from the axisymmetric paraboloid, z ¼ ðx2 þ y2Þ=R � U0t; by its
stretching in horizontal directions without changing the areas of the body cross-sections. This implies that the product

AB is the constant equal to R in (24). Therefore,

A ¼
ffiffiffiffiffiffiffiffi
kgR

p
; B ¼

ffiffiffiffiffi
R

kg

s
; ð28Þ

where kg is now the stretching parameter, 0okgr1: The two dimensional case corresponds to kg ¼ 0 and the
axisymmetric case to kg ¼ 1: It should be noted that the parameter kg in Eq. (28) cannot be too small. This follows from

the main assumption of the Wagner theory, which requires that the deadrise angle of the entering body be small.

Substituting B in Eq. (28) for B in Eq. (25) and taking Eq. (27) into account, we obtain

dEtotj ðtÞ

dt

����
0okgr1

¼ qðkgÞ
dEtotj ðtÞ

dt

����
kg¼1

; ð29Þ

qðkgÞ ¼
p
3

ffiffiffi
2

3

r
k2

k
3=2
g EðeÞ

1þ k2DðeÞ=EðeÞ
� �3=2

; ð30Þ

where the function k ¼ kðkgÞ is defined in implicit form by Eq. (26). The function qðkgÞ is depicted in Fig. 6. This
function characterizes the energy flux for elongated bodies compared to the axisymmetric one of the same volume. It

should be noted that qðkgÞZ0:9 as long as kg > 0:43: This means that the paraboloid must be very elongated—and
consequently the Wagner assumption is indeed violated—so that the corresponding flux of energy through the jet

significantly deviates from the axisymmetric case. If the body velocity is kept constant during the impact, Eq. (21) can

be integrated, which gives the jet energy at instant t as

Etotj ðtÞ ¼
1

2
U2
0

2pra2b

3EðeÞ
; ð31Þ

where the quantity 2pra2b=ð3EðeÞÞ is known as the added mass MaðtÞ of the elliptic disc DðtÞ: Therefore, in the
homothetical case and at constant velocity of the body, the jet energy is proportional to the added mass of the

expanding disc:

Etotj ðtÞ ¼
1

2
U2MaðtÞ: ð32Þ

It is proved in the next section that formula (32) is also valid in nonhomothetical case, when dk=dta0:

6. Distribution of kinetic energy

It is well known that the energy conservation law is not satisfied within classical Wagner theory. In the general case,

d

dt
½AðtÞ � TðtÞ
 ¼

1

2
U2ðtÞ

dMa

dt
; ð33Þ
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where TðtÞ is the kinetic energy of the liquid flow in the outer region, TðtÞ ¼ 1
2
MaðtÞU2ðtÞ; AðtÞ is the work

done to oppose the hydrodynamic force on the entering blunt body. During the initial stage of the water impact,

the added mass of the expanding flat disc DðtÞ increases, dMa=dt > 0: Therefore, Eq. (33) gives TðtÞoAðtÞ;
which is usually considered as an indication that a part of the energy is ’’lost’’ during the impact. It is proved below that

the flux of energy in the right-hand side of Eq. (33) is equal to the flux of kinetic energy (20) through the jet in the case of

elliptic contact lines.

Comparing the right-hand sides of Eqs. (20) and (33), we conclude that it is enough to prove the equality

dMa

dt
¼
2pra

EðeÞ
’ab þ

1

3
ð ’ba � ’abÞ 1þ k2

DðeÞ
EðeÞ

� �
 �
; ð34Þ

where the added mass MaðtÞ of the elliptic disc DðtÞ is given as MaðtÞ ¼ 2pra2b=ð3EðeÞÞ: By using the following
formulae,

dE

de
¼ �eDðeÞ;

de

dt
¼

aða ’b � ’abÞ
b3e

; ð35Þ

the time derivative of the added mass is found to be

dMa

dt
ðtÞ ¼

2pr
3

d

dt

a2b

EðeÞ


 �
; ð36Þ

where

d

dt

a2b

EðeÞ


 �
¼

a

EðeÞ
2 ’ab þ a ’b þ ab’ee

DðeÞ
EðeÞ


 �
¼

a

EðeÞ
3 ’ab þ ða ’b � ’abÞ þ k2ða ’b � ’abÞ

DðeÞ
EðeÞ


 �
: ð37Þ

Replacing the latter expression into Eq. (36), we arrive at equality (34). Therefore,

dEtotj

dt
¼
1

2
U2ðtÞ

dMa

dt
ð38Þ

and Eq. (33) provide after its integration with respect to time,

AðtÞ ¼ TðtÞ þ Etotj ðtÞ: ð39Þ

We can conclude now that the energy conservation law is held within the three-dimensional Wagner theory if the jet

energy is taken into account. It should be noted that this result is only proved for the case of elliptic contact lines.

It is seen that the energy is equally transmitted to the bulk of the fluid and to the spray jet, TðtÞ ¼ Etotj ðtÞ ¼ 1
2
MaðtÞU2

0 ;
provided that the velocity of the entering body is constant. If not, one has

Etotj ðtÞ ¼ TðtÞ �
Z t

0

MaðtÞUðtÞ ’UðtÞ dt; ð40Þ

where MaðtÞZ0 and UðtÞ > 0: Therefore, the main part of the energy is transmitted to the bulk of the fluid, TðtÞ >
Etotj ðtÞ; if the body velocity increases, ’UðtÞ > 0; after the impact instant. Correspondingly, the main part of the energy is
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Fig. 6. Variation of the function qðkgÞ [see Eq. (30)] with the aspect ratio kg ¼ A=B:
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transmitted to the jet, Etotj ðtÞ > TðtÞ; if the body velocity decreases, ’UðtÞo0; after the impact. The velocity of the entering
body decreases, in particular, in the case of free fall of the body onto the liquid free surface.

7. Conclusion

The initial stage of vertical impact of a smooth blunt body onto a free surface of ideal and incompressible liquid has

been considered. It is shown that the flow description, which is uniformly valid during the initial stage, can be obtained

by matching the three-dimensional Wagner solution in the main flow region (outer solution) to the two dimensional

nonlinear solution in the jet root region (inner solution). The matching procedure has been justified by a local analysis

of the outer solution in the close vicinity of the contact line. It can in fact be proved that the outer solution flow mainly

occurs in the normal direction to the contact line in its close vicinity. The analysis is restricted to the case of elliptic

contact lines, which are characterized by only two parameters and for which many analytical developments were

available.

The uniformly valid solution of the three-dimensional impact problem is used to evaluate the distribution of the

energy during the impact process. It is shown that the energy conservation law is satisfied with this combined solution.

It was known in both two dimensional and axisymmetric cases that the energy is equally transmitted to the bulk of the

fluid and to the spray jet provided that the velocity of the entering body is constant. In the present paper, this result is

proved to be valid also for the three-dimensional case.

So far, it is not clear in which way the obtained solution can be modified to account for a nonzero horizontal

component of the entering body velocity. One may expect the contact region to be nonelliptic for an elliptic paraboloid

entering liquid at an attack angle.

The solutions obtained can also be used to evaluate the uniformly valid pressure distribution over the wet part of the

entering body surface. Either the composite solution by Zhao and Faltinsen (1992) or the ‘‘second order’’ solution by

Cointe and Armand (1987) can be used. The force is then numerically calculated from pressure integration. This

analysis should improve the prediction of the total hydrodynamic force acting on the body. Finally, comparisons with

experimental data will determine the field of application of the present formulation, particularly over what time interval

the solutions remain valid.
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